Review Article

Targeting oncogenic receptor: From molecular physiology to currently the standard of target therapy

George Zhu1*, Ali-Akbar Saboor-Yaraghi2, Yosef Yarden3
1The Institute of Oncology, Tehran University of Medical Sciences, Tehran
2Department of Cellular and Molecular Nutrition School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
3Department of clinical Immunology, Weizmann Institute of Science, Rehovot 76100, Israel

Received: 3 February 2017 Revised: 22 February 2017 Accepted: 24 February 2017

Abstract

In 1989-91, George Zhu first postulate oncogenic receptor, as a result of his experiments in which steroid PML-RARa fusion receptor gene rearrangement within t(15;17) translocation in acute promyelocytic leukemia (APL), and androgen cognating its (AR/ERa signaling or FGFR-1) receptor induced tumours of the breast glands in two aplastic anemia during the course of testosterone treatment (hormonal tumorigenesis). In the past 2-3 decades, there are at least 30 receptor genes involving in various of oncogenic process. These normal physiologic receptors linked to gene amplification, rearrangement, deletion and activating mutations, which converted receptor to oncogenic (also oncogenic receptor) in development, progressive and pathogenesis of benign and malignant diseases. Receptors included nuclear receptor family members (oncogenic estrogen/estrogen receptor alpha signaling, oncogenic androgen receptor, oncogenic pml/RARa, and GRβ); Oncogenic growth factor receptors (EGF/oncogenic receptor EGFR, Neu oncogenic receptor, insulin receptor/c-ras proto-oncogenic receptor, insulin and IGF-1 and -II/oncogenic IGF-1R thrombopoietin (TPO)/TPO receptor. oncogenic MPL receptor, HGF/HGFR, met oncogenic receptor); Cytokine receptor rc family members; Cytokine receptors including the βc family(G-CSF/oncogenic CSF3R, oncogenic EPOR),and oncogenic autocrine growth hormone/nuclear GHR and other VEGFR2. Upon ligand binding or external antigen stimuli, mutated growth factor receptors and mutant cytokine receptors including type I cytokine receptor may be activated via ligand binding receptor complex, receptor dimerizes especially receptor homodimerization, and induces transphosphorylation of tyrosine residues in the cytoplasmic domains which serves as docking sites for several adaptor molecular harboring SH2 domain or phosphotyrosine binding domain. These adaptor molecules recruit and activate downstream signaling molecules such as Ras/MAPK, phospholipase C-ε, JAK-STAT molecules, NF-KB pathways through tyrosine- or serine/threonine-phosphorylation. Among them, Ras/MAPK/ERK, PI3-K/akt and STAT pathways act as the major oncogenic signaling pathway. Overall, these receptors coupled with their ligands are key importance in human subtle balance in physiologically regulating multiple cellular processes, for example, in cellular proliferation and differentiation. Oncogenic receptors mutational activation and/or aberrant gene rearrangement are promiscuously interference with normal cell survival, anti-apoptosis and proliferation, and malignant initiation and progression. Others, in a special APL case, oncogenic pml/RARa fusion behave as a potent (constitutive) transcriptional repressor of RAR and retinoic acid signaling, inducing a differentiation blockade at promyelocytic stage which can be overcome with therapeutic doses of 9-cis retinoic acid or ATRA ligand. This is the classical model of retinoic acid action. This encourages receptor normal agonist, and oncogenic receptor antagonists (or inhibitors) target therapy.

Keywords: Receptor; Oncogenic receptor; gene activating mutation and/or aberrant rearrangement; tumours/cancers
(Chomienne et al., 1990; de The et al., 1991), at the same peroid, found that in t(15;17) APL the translocated retinoic acid receptor alpha(an RAR mutant) contribute to leukemogenesis. Neil JC (Neil et al., 1988) is in detail receptor-mediated leukaemogenesis from the oncogenic function of T cell antigen receptor(TCR oncogenic signal) on lymphoid cells not only bind external ligand but are crucial in cellular proliferation. In transgenic mice expressing a mutated TCRbeta lacking the variable chain(Detta V-TCRbeta) developed CD4+,CD8+,IL-2Ra positive T-cell lymphoma (Jacobs et al, 2015). Patients with ataxia-telengectasias are particularly prone to development of T-cell chronic lymphocytic leukemia with chromosomal abnormalities. The breakpoint is composed of a TCR J alpha chain region (from 14q11) fused to sequences derived from 14q32 but on the centromeric side of the IgCmu (IgH), indicating that a 14:14 translocation (t(14;14) (q11;q32); inv(14)(q11;q32)) in the development of T-cell tumors (Denny et al, 1986; Davey, et al, 1988). Like mutated oncogenic growth factor receptors (Corcos, 1990), antigen- independent B cell receptor (BCR) signaling drives the oncogenic process (Farinha,2005). The genetic defects in heavy-chain disease(HCD) result in the production of abnormal membrane-associated heavy chain lacking an antigen-binding domain, these aberrant B-cell antigen receptors might engage in ligand-independent signaling,indicating a role in the genesis of HCD neoplasia (Corcos, 1990; Corcos et al, 2011). Thus, BCR associated kinase inhibitors,such as ibrutinib,have revolutioned the treatment of chronic lymphocytic leukemia (CLL)(Jain, et al, 2017).

Yarden Y (Yarden,1991) propose neu oncogenic receptor from neu oncogene-related receptor tyrosine kinase (RTK), and this might be useful in neu oncogenic receptor (Levea et al, 1993; Tzahar et al., 1998; Houliston et al., 2004; Jonckere et al., 2012; Nicolas, 2015) antagonists lapatinib and trastuzumab target therapy in metastatic breast cancer with HER2V659E mutation (Serra et al., 2013). In a large trials of 48 HER2-positive early breast cancer patients, the adjuvant trastuzumab treatment demonstrates highly favorable outcome. Five-year overall survival rates and disease free survival rates were 95.8% and 93.8% respectively (Kato,2015). Al-Nedawi (Al-Nedawi et al., 2008) explore the area that microvesicles containing oncogenic receptor EGFRVIII released to cellular surroundings and blood of tumour-bearing mice,and can merge with the plasma membranes of cancer cells lacking EGFRVIII. This intercellular transfer of membrane-derived microvesicles (‘oncosomes’-small plasma membrane buds, Robinson (Robinson, 2015) leads to the transfer of oncogenic activity including activation of MAPK and Akt and autocrine activation of its key signaling receptor (VEGF receptor-2), and increases in anchorage-independent growth capacity. Santos (Santos et al., 2015) studies oncogenic GRPR (gastrin-releasing peptide receptor) in neoplastic multiple signaling pathway. Somatic mutations in cholecystokinin 2 receptor (CCK2R) alter receptor activity that promote oncogenic phenotype, and the importance of evaluating CCK2R inhibitors to block mutant forms of this receptor (Willard et al., 2012). Intriguing, epithelial cell adhesion molecule (EpCAM), as a homophilic adhesion protein, is a novel oncogenic receptor which frequently overexpressed in epithelia, progenitors, embryonic stem cells, carcinoma and cancer-initiating cells, and target its antibodies (Maetzel et al., 2009). The present will in brief focus on recent innovative diagnostic and therapeutic strategies forthcoming in this area.

Steroid hormone receptors oncogenic signaling

Steroid hormones are a biologically related hormones secreted into blood stream by the adrenal cortex and glands (ovaries and testes) (Singh and Kumar, 2005). After releasing into the blood, steroid hormones enter target cells by crossing the cytoplasmic membrane and exert their action by binding to high affinity receptors, also known as steroid hormone receptors. Steroid hormones control a wide variety of cellular function. Sex hormone (androgen and estrogen) play an important role in gonadal (sex determination) development, the formation of the menstrual cycle. At puberty, estradiol induces mammary duct formation. As the hypothalamic-pituitary-ovarian axis matures, there is a brief phase of an ovulatory cycles during which the mammary gland is influenced principally by estrogens. Once ovulation is established, corpus luteum produces progesterone, which stimulate growth of the lobuloalveolar structures. During the reproductive years, progesterone promotes differentiation of alveolar cells into secretory cells, and dilation of the duct system. In conjunction with prolactin and other metabolic hormones, progesterone stimulates lipid droplet formation, and secretory activity. While prolactin and growth hormone are the most important pituitary hormones affecting growth of the mammary gland during pregnancy. It is estradiol and progesterone that prevent the full expression of this secretory effect on the mammary epithelium. At parturition, the sudden withdrawal of these two hormones permits the breast to respond to the lactogenic hormones. Progesterone can acts in synergy with estradiol to prime the mammary gland to respond to mitogens like prolactin, glucocorticoids and growth hormone, which is essential for human alveolar gland development and growth (Horwitz, 1985). Figure 1 represents hormone biosynthetic reaction.

The estrogen receptor (ER) is found in a wide variety of species and is involved in the programming and regulation...
of gene expression in vertebrate female sex-accessory tissue (Green & Chambon, 1986). Estrogen E2/ERα signaling plays an important role in the regulation of mammary gland development and function, and also contributes to the onset and progression of breast cancer. More than 70% of human breast cancers express ERα, and elevated levels of ERα in benign breast epithelium correlate with increased risk of breast cancer (Elangovan et al., 2011). Green S & Chambon P (Green & Chambon, 1986) described oncogenic hormone receptor from human oestrogen receptor cDNA sequence. This carcinogenicity of estrogen is attribute to receptor-mediated stimulation of cellular proliferation. Increased proliferation could result in turn in accumulation of genetic damage and stimulation of the synthesis of growth factors that act on the mammary epithelial cells via an autocrine or paracrine loop (Russo et al., 1998). There were evidence that estrogen-dependent cell line (MCF-7) cells under estradiol(E2) stimulation release some known polypeptide growth factor activities (EGF-like, IGF-1-like) (Dickson et al., 1986). Dickson RB and Stancel GM (Dickson & Stancel, 2000) discuss estrogen receptor-mediated processes in normal and cancer cells. ERα mediated regulation of gene expression plays many significant roles in normal and cancer cells and this will improve the understanding of hormonal carcinogenesis.

Furthermore, Russo (Russo et al., 2002 & 2006) Santen, Cavaleri, Rogan (Santen et al., 2009) and Yager, Yue (Yue et al., 2009; Cavaleri et al., 2002) discussed estrogen receptor-dependent and independent mechanisms of breast carcinogenesis. ERα mediated stimulation of breast cell proliferation with a concomitant enhanced rate of mutations, and estradiol metabolites (see figure 2a) to genotoxic DNA mutation cause DNA damage (figure 2b). Thus, ERα function as estrogen activated transcription factor and involved in the stimulation of estrogen target genes in the regulation of cell cycle progression and growth of breast epithelium (Singh et al, 2005). As Clarke described (Clarke, 2004), some ERα/PR-positive epithelial cells are quiescent breast stem cells that acts as 'steroid hormone sensors'. Such hormone sensor cells are likely to secrete positive or negative paracrine/juxtacrine factors dependent on the prevailing estrogen or progesterone concentration to influence the proliferative activity of adjacent ERα/PR- epithelial cells. This might represent one

Figure 1. Hormones normally biosynthetic reaction

![Hormones normally biosynthetic reaction](image-url)

www.apjonline.in
step toward the development of neoplasia and malignancy-invasive tumors.

Utilizing ERKO/wnt-1 oncogene mice (Bocchinofuso et al., 1997, figure 3) and aromatase/ERKO transgene mice (Tekmal et al., 2005), they demonstrated the role of ERα-dependent in mammary development and carcinogenesis. Lack of ERα mice results in impaired mammary development and much delayed tumor incidence even in the presence of tissue estrogen (50% of mammary tumors at 5 months in ER-positive animals versus 11 months in those without ERα). Whereas introduction ERα into the tTA/TAg mice (Tilli et al., 2003) and DES-treated MT-mER transgene mice (Couse et al., 1997; Davis et al., 2012) developed mammary adenocarcinoma (at 8 months) and preneoplastic lesion atypical hyperplasia (at 4 months), which implicate that ERα contributes to carcinogenic through ER-mediated signal transduction, increasing estrogen-responsive cell proliferation, and ERα signaling in mammary cancer initiation and progression.

Moreover, mutations in estrogen receptor converted estrogen receptor-dependent breast tumor into estrogen-independent growth (Wesledge & McGuire, 1983). Fuqua (Fuqua, et al, 2000) found a K303R estrogen receptor alpha (ERα) mutation in human premalignant breast lesions (figure 4). The K303R mutation formed tumors in nude mice faster than cells expressing wild-type ERα in the presence of low levels of estrogen (at 10-12 M estradiol), and those K303R ERα-expressing tumors are estrogen-independent growth (Herynk et al, 2010). From screening of those ER+ breast cancer, Veeraraghavaa and colleagues (46-47) detected oncogenic ESR1-CCDC170 fusion positive tumors. This neoplastic ESR1-CCDC170 fusion leads to anchorage-independent growth, reduced endocrine sensitivity and enhanced xenograft tumor formation, suggesting a new concept of this oncogenic receptor ESR1 fusion in pathobiology in a more aggressive subtype of breast cancer.

Thus far, in addition to tamoxifen and fulvestrant, AZD9496, a non-steroid small molecule inhibitor of oncogenic (or neoplastic, due to not targeting a normal ERα) Era (George Zhu, 2007; Elangovan et al., 2011; Tilli et al., 2003; Couse et al., 1997; Frech et al., 2005) bound and down-regulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1 mutant patient-derived xenograft model that included a Y537 and D538G mutation (Takeshita et al., 2015; Weir et al., 2016). AZD9496 is currently being evaluated in a phase I clinical trial (Weir et al., 2016).

Using heterotypic tissue recombination, Cunha (Cunha et al., 1981-2008) established a stromal androgen

Figure (2a). Estradiol metabolites reaction. (2b), Schematic description of DNA damage mutation following formation of depurinating adduct. Data adapted from Yue et al. (2013).
receptor for mesenchymal-epithelial transition (EMT) in normal androgen-dependent prostate development and in the etiology of benign prostatic hyperplasia (Izumi et al., 2013). By different methods including immortalized human prostate cells expressing androgen receptor (Berger et al., 2004) and androgen receptor transgene (Stanbrough et al., 2001), they demonstrated that androgen receptor is oncogenic, and this oncogenic receptor induces prostate intraepithelial neoplasia (PIN) and plays a crucial role in transforming process in prostate cells. The AR-expressing PrECs are dependent on circulating testosterone for tumor growth, and immortalized PrECs lacking AR failed to form tumors. But this androgen receptor is difficult to characterize as an oncogene (Berger et al., 2004). Mononen (Mononen et al., 2000) and Koivisto (Koivisto et al., 2004) detected the R726L mutation of androgen receptor (AR) in Finnish patients with sporadic or familial prostate cancer, which may confer an up to 6-fold increased risk of a small fraction of prostate cancer in Finlan. T877A mutation of AR was identified in LNCaP cell line and metastatic cells of androgen-independent prostate cancer (Harris et al., 1990; Veldschmolte et al., 1990; Culing et al., 1993; Goddipati et al., 1994; Suzuki et al., 1996; Southwell et al., 2008), whereas V739M was identified in early stage PCa (Newmark, 1992). Nyquist (Nyquist, 2013) discovered intragenic AR gene rearrangements in CRPC tissues, rendering expression of truncated AR variants proteins lacking the AR ligand-binding domain, constitutive activity of AR, and intragenic ARv567es cDNA formed tumor faster rate and a CRPC growth independent of full-length AR or androgens. Therefore, targeting oncogenic AR variants (George Zhu, 2013; Berger, 2004; Tepper, 2002; Kung, 2009; Sun, 2010; Young, 201; Liang, 2015) (here, please note that it is no need to target a normal AR) includes AR antagonists bicalutamide and enzalutamide, which might provide an approach to suppress prostatic intraepithelial neoplasia (PIN) development. In phase II trials, the CBR (clinical benefit rate) of 19% was observed with bicalutamide 150mg daily dose in selected patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer (Gucalp, 2013).

In another area, increased thyroid diseases and thyroid papillary carcinoma (PTC) associated with a high dietary iodine intake (George Zhu, 2013; Coindet, 1821; Goldberg & Chaikoff, 1952; Suzuki et al., 1962; Mussig et al. 2006; Horn-Ross et al., 2001; Giusti et al., 2010; Michikawa et al., 2012; Schneider, 2013; Chandrasekarn et al., 2013; Choi & Kim, 2014).

GRß/STAT-5 pathway was found to be involved in erythrocytosis (Varricchio et al, 2011), and GR/SK1 (including GR-SK1-FOXO3a signaling pathway and GR-SGK1- MKP1/DUSP1 pathway) network linked to higher tumor grade and antiapoptotic and increased cancer recurrence (Mikose et al., 2001; Melhem et al., 2009; Isikbay et al., 2014). Moreover, the aberrant glucocorticoid receptor signaling in breast cancer (Mirannd, et al, 1953; Lien et al., 2006; Moutsatso et al., 2007; Vilasco et al., 2011), prostate hyperproliferation (Krishnan et al., 2002; Simanaien, 2011), Cushing’s disease (Ebisaeva et al., 2008) and Nelson’s syndrome (Karl et al., 1996). Thus, GR activation is sufficient to provide a potent signal for cell survival in mammary epithelial cells. Induction of serum and glucocorticoid-regulated kinase-1 (SGK-1) expression is required for GR-mediated epithelial cell survival signaling. SGK-1 is a direct GR target and encodes a serine-threonine kinase with significant homology to Akt-1. In immune histochemical analysis, nucleus GR immunostaining and glucocorticoid receptor (GR) immunopositive cells were abundantly present in subclinical Cushing’s disease due to pituitary adenomas (2 macroadenomas and 8 microadenomas), suggesting impaired glucocorticoid action, at least in part, in tumorigenesis of this disease (Ebisaeva et al., 2008). RU486 (mifepristone), a glucocorticoid receptor antagonist, has been successful treatment of the Cushingoid phenotype.
with markedly elevated lymphocyte glucocorticoid receptor numbers in a transient Cushing's syndrome (Newfield, 2000; Johanssen et al., 2007). Mifepristone may also be a useful strategy for increasing tumor cell apoptosis in chemotherapy-resistant GR+ triple-negative breast cancer (TNBC) (Skor et al., 2013). In addition, the cortisol/cortisone-responsive AR(ARccr) has two mutations (L701H and T877A) that were detected in the MDA PCa human prostate cancer cell lines established from a castrated patient whose metastatic tumor exhibited androgen-independent growth. GR antagonist RU38486 showed inhibitory activity (Krishnan et al., 2002), but its therapeutic application to treat prostate cancer may be limited. Thus, the combination of ARccr receptor antagonists bicalutamide (casodex) together with a ligand suppressor (triamcinolone) represents a new therapeutic strategy for the treatment of the subset of androgen-independent prostate cancers harboring the L701H or ARccr type.

So there is a conflict among hormone FSH/FSH receptor in etiology of epithelial ovarian cancer (Risch, 1998; Althuis et al., 2004). Actions of FSH (follicle-stimulating hormone) in reproductive physiology are essential for folliculogenesis and steroidogenesis (Richards & Faruukhi, 1978), FSH receptor (FSHR), a transmembrane receptor with a G protein-coupled signaling, is expressed by granulosa cells in developing ovarian follicles. Overexpression of FSHR activates oncogenic pathways through FSHR-induced EGFR amplification, and HER-2/neu and activated ERK1/2 in preneoplastic immortalized ovarian surface epithelium (IOSE) cells (Choi, 2004). The data by epidemiological studies that an increased occurrence of ovarian cancer has been suggested with exposure to high levels of gonadotropins during postmenopause or infertility therapy (Hull et al., 1996; Shusha et al., 1996; Brinton et al., 2004).

Retinoids can regulate proliferation and differentiation of normal myeloid cells, and that supraphysiological levels of retinoic acid (9-cis RA or all-trans RA) can induce abnormal promyelocytes toward maturation. These leukemic cells harboring steroid PML-RARA translocation play a central role in etiology of APL (George Zhu, 2013, Chomiene, 1990; de The, 1991; Hauksdottir & Privalsky, 2001). The PML-RARA chimera can function as a strong transcriptional repressor of retinoic acid(RA) signaling andRAR function by perturbing normal retinoid signaling, leading to a block in differentiation and in an accumulation of leukemic cells at promyelocytic stage (George Zhu et al., 2013 and 2014; Hauksdottir & Privalsky, 2001; Grignani et al., 1993; Rousselet et al., 1994; Yoshida et al., 1996; Kitarieewa et al., 2002; Segalla et al., 2003; Carbone et al., 2006; Nasr et al., 2008; Marstrand et al., 2010; Lallemand-Breitenbach & de The, 2010; Podhorecka et al., 2013; Dos Santos et al., 2013; Humbert et al., 2014; De Brackeleer et al., 2014) (see model, figure 5, George Zhu, 1991, 2013, 2014). This oncogenic receptor is locked in its "off" regulated mode thereby constitutively repressing transcription of genes or key enzymes that are critical for differentiation of hematopoietic cells (George Zhu et al.,

Figure 5. Hypothetical model of the regulation of retinoic acid (RA) action (George Zhu, January 1991, revised in 2012). Schematic alignmentof the receptor protein. The two highly conserved regions, identified as the putative DNA-binding (C) and hormone-binding (E), a hinge region (D) and the non-conserved variable NH2-terminus (A/B) as described above. Data adapted from George Zhu (2013).
oncogenic EGFR-KDD-transformed cells are sensitive to the EGFR tyrosine kinase (TKI) inhibitors (Gallant et al., 2015; Konduri et al., 2016). EGFR-KDD is oncogenic and alterations in lung cancer: EGFR exon18-25 kinase domain frame deletions in exon19 or point mutations T790M and L858R. These mutations, which commonly occur as either small in- frame deletions in exon19 or point mutations T790M and L858R in the EGFR tyrosine kinase domain, confer constitutive activity and sensitivity to EGFR tyrosine kinase inhibitors (TKI). Recombinant EGFR kinase activity was reported to be as high as the parental A431 cell line. Molecular cloning of the EGFR tyrosine kinase domain, that is found in a deletion product from a lung tumor, determined that the kinase activity of the EGFR kinase domain is completely dependent on a tyrosine residue (Tyr1068) in the catalytic domain. These mutations, which commonly occur as either small in-frame deletions in exon19 or point mutations T790M and L858R, confer constitutive activity and sensitivity to EGFR tyrosine kinase activity (Tyr1068) in the catalytic domain. These mutations, which commonly occur as either small in-frame deletions in exon19 or point mutations T790M and L858R, confer constitutive activity and sensitivity to EGFR tyrosine kinase activity (Tyr1068) in the catalytic domain. These mutations, which commonly occur as either small in-frame deletions in exon19 or point mutations T790M and L858R, confer constitutive activity and sensitivity to EGFR tyrosine kinase activity. The EGFR receptor (EGFR) (Cohen et al., 1982; Brown et al., 1989) has a key role in normal embryonic development, adult tissue hemeostasis, and many pathological processes, particular tumor formation. Ablation of EGFR activation becomes oncogenic due to overexpression and/or amplification of the EGFR gene or by autocrine/paracrine growth factor loops, whereas activating dimerization promotes EGFR signaling, which lead to ligand-independent (Zandi et al., 2007; Laisney, 2013). Phosphorylation of this oncogenic receptor at residues Tyr845, Tyr1045 and Tyr1173 leads to receptor activation and downstream signaling (Glynn et al., 2010; Kim, 2015). Oncogenic receptor EGFR (George Zhu, 1993-2013, 2015; Al-Nedawi et al., 2008; Laisney, 2013; Ullrich, 1992; O’Connor, 2008; Gabitova, 2014) was found to involve in A431 human carcinoma cells (Shimizu et al., 1982; Merline et al., 1984; Ullrich et al., 1984; Santon et al., 1986), squamous cell carcinoma (SSC) (Kamata et al., 1986), epithelial cell lines from mammary carcinoma (Minke et al., 1991), glioblastoma stem cells (George Zhu et al., 2013; Lee et al., 2006, Miltra, et al., 2009). EGFR++ positive in one glioma, (George Zhu, 2013), and colorectal carcinoma tissue (Hembrouagh, 2012). Oncogenic EGFR mutations are found in 10% to 35% of lung adenocarcinomas, with predominant in a subset of patients with non-small cell lung cancer (NSCLC) (Godin- Heymann et al., 2007; Rosell et al., 2011; Karachalion et al., 2014). These mutations, which commonly occur as either small in-frame deletions in exon19 or point mutations T790M and L858R in the EGFR kinase domain (Cohen et al., 1982; Brown et al., 1989) confer constitutive activity and sensitivity to EGFR tyrosine kinase inhibitors (TKI) (Gallant et al., 2015; Konduri et al., 2016). Recent, Gallant (Gallant et al., 2015) identified a novel EGFR alterations in lung cancer: EGFR exon18-25 kinase domain duplication (EGFR-KDD). EGFR-KDD is oncogenic and oncogenic EGFR-KDD-transformed cells are sensitive to the EGFR TKI afatinib. Konduri and colleagues (Konduri et al., 2016) reported five patients with metastatic lung cancer whose tumors harbored EGFR fusion, most commonly RAD51 are recurrent in lung cancer. Four of whom were treated with EGFR TKI erlotinib with documented antitumor response for 5, 6, 8, and 20 months respectively. These patients whose tumors harbored EGFR fusions are oncogenic in preclinical studies. In mouse model, transgenic mice expressing EGFR L858R in type II pneumocytes developed atypical adenomatous hyperplasia and multifocal adenocarcinoma, and gefitinib inhibited tumorigenesis completely (Ichihara, et al., 2009). Blesa (Blesa et al., 2013) present a durable complete remission of a relapsed glioblastoma with a complete radiologic response and the combination of cetuximab and bevacizumab in a third-line setting, that has offered a progression-free survival of 20 months. In Cuba, CimaVax-EGF, promising, an active vaccine targeting EGF as the major ligand of EGFR, it is in use as a cancer therapy against non-small-cell lung cancer (NSCLC) (Rodriguez et al., 2010; Gonzalez et al., 2011).

PDGFRa mutations are oncogenic(tumorigenic) and developed 100% of mice with brain tumors whereas only one of 19 mice implanted with cells overexpressing wild-type PDGFRa developed into brain tumor in vivo (Paugh et al., 2013; Yamada et al., 2006). This D842V mutant was effectively inhibited by crenolanib, a specific inhibitor of PDGFRa and PDGFRB. Golub (Golub et al., 1994) identified that PDGF receptor β is oncogenic in pathogenesis of chronic myelomonocytic leukemia with t(5;12) chromosomal translocation, targetable oncogenic receptor tyrosine kinases PDGFRa/PDGFRB, and FGF fusions (Mizuki et al., 2008; Lierman et al., 2007; Holzmann et al., 2012; Mcgee, 1988; Oda et al., 2004) in diverse cancers have made some major progress. For example, these hypereosinophilia (HES) patients with FIP1L1/PDGFRA have excellent responses to imatinib treatment (Apperley et al., 2002; Cools et al., 2003; Klion et al., 2007; Jovanovic et al., 2007; Helbig et al., 2008; Arefi et al., 2012). At present, Imatinib, a selective inhibitor of ABL, KIT, and PDGFRa/B, is the first line target therapy for gastrointestinal stromal tumor (GIST) (Kuroiwa et al., 2005).

Hepatocyte growth factor (HGF), like other growth factors, has different effect in different cells. HGF regulates cell growth, cell mortality and morphogenesis by acting a tyrosine signaling cascade after binding to the proto-oncogenic receptor for HGF(HGF, also proto-oncogenic receptor c-met, met receptor) (MacDougall et al., 2005; Spee et al., 2007; Fieten et al., 2009; Nakamura et al., 2011).
HGF enhances hepatocyte growth, potently suppresses apoptotic death of hepatocytes and decreases serum bilirubin and serum ALT(alanine aminotransferase),which provide therapeutic action of HGF, including severe hepatitis, fulminant hepatic failure (Ishiki et al., 1992) and liver cirrhosis (Matsuda et al., 1995).

HGF-HGF receptor (met oncogenic receptor) signaling stimulate growth of mouse C127 cells transformed phenotype (Jeffers et al., 1996), Caki-1(a human kidney clear cell carcinoma cell line), U87-MG (a glioblastoma cell line) (Olwill et al., 2013), canine osteosarcoma cells (Fieten et al., 2009), and human hepatoblastoma cells (Goyal et al., 2013), and AML (Kentis et al., 2012).

In vitro HGF can transform immortalized mouse liver epithelial cells (Kanda et al., 1993). Serum HGF levels are elevated in patients suffering from chronic hepatitis and liver cirrhosis (Tomiya, 1992). Moreover, hepatocytes from transgenic mice expressing HGF grew more rapidly than did those from normal siblings. In vivo, Fao HGF cells produced tumors when transplanted into nude mice (Shiota et al., 1992). These conditions cause persistent hepatocellular damage and regeneration; consequently, there are associated with the subsequent of hepatocellular carcinoma (HCC). Thus, HGF-HGF receptor signaling might play an important role in carcinogenesis (Goyal et al., 2013, Gentile et al., 2008). PRS-110 (starting at 0.8mg/kg and going up to 30mg/kg) specifically binds to Met receptor with high affinity and blocks HGF interaction on ligand-dependent (U87-MG) and ligand-independent (Caki-1) xenograft model (Olwill et al., 2013). Animals were randomized for the treatment with a novel met inhibitor EMD 1214063 (50mg/kg/d), which resulted in a complete regression of the sensitive H1112L met variant-derived tumors (Medova et al., 2013). Foretinib, the first multi-target c-met TKI to under clinical investigation, produced a promising benefit in HCC patients (Kentis et al., 2012).

Cytokine receptors had oncogenic mutant variants in cancer

G-CSF (filgrastim) has been used in clinic for more than 2 decades to treat congenital and acquired neutropenias (Kostmann et al., 1975; Dale et al., 1993; Hubel et al., 2002; Zeidler et al., 2000; Donini et al., 2007; Rosenberg et al., 2010). It is highlight the clinical application of G-CSF to children with severe congenital neutropenia (SCN) and especially in patients with neutropenia harboring in the G-CSF receptor(CSF3R) gene, which is correlated to an increased risk for development of MDS and acute myeloid leukemia (AML) (Beekman & Touw, 2010). There are two classes of CSF3R mutant variants: truncations of the cytoplasmic domain (Germeshausen et al., 2007; Beel et al., 2009) and membrane proximal point mutations including T618I (Fleischman et al., 2013). Truncated CSF3R mutations are the mutant type nearly almost observed in SCN and abnormal signaling of this oncogenic receptor variants in malignant transformation, whereas membrane proximal mutations (particularly T618I) are the predominant mutation type observed in chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL negative) chronic myeloid leukemia (aCML), and confer ligand-independent growth (Fleischman et al., 2013).

Maxson and colleagues (Maxson et al., 2013) identified activating mutations for CSF3R in 59% (16/27) of patients with CNL or atypical CML. In vivo, the activating mutation in the CSF3R gene induces hereditary chronic neutrophilia (Plo et al., 2009). Mice transplanted with CSF3R T618I-expressing hematopoietic cells developed a myeloproliferative disorder (Fleischman et al., 2013). Treatment with the JAK inhibitor ruxolitinib lowered the white blood cells and reduced spleen weight. These results indicate that activating mutant CSF3R is oncogenic (Maxson et al., 2013) and sufficient to drive a myeloproliferative disorder resembling CML and CNL that...
is sensitive to pharmacologic JAK inhibition (Fleischman et al., 2013).

Another more example is that a translocation t(14;19)(q32;p13) was involved IGH@ and the cytokine receptor EPOR at 19p13 in two patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) (Russell et al., 2009; Iacobucci et al., 2014, 2016). An over 230- and 241-fold increase in the expression of EPOR were observed in 2 patients at diagnostic and relapse samples respectively. The EPOR-IGH/IGK chain fusions result in truncation of the cytoplasmic tail of EPOR at residues similar to the mutant EPOR in PFCP, with preservation of the proximal tyrosine essential for receptor activation and loss of distal regulatory residues. Expression of truncated EPOR in mouse B cell progenitors induced ALL in vivo. The data implicate oncogenic erythropoietin receptor in role of both benign erythrocytosis and malignancy (Longmore et al., 1993; de la Chapelle, 1993). Moreover, mutation of erythropoietin receptor (EPOR) gene was associated with primary familial and congenital polycythemia(PFCP). Truncated mutations of 59 to 84 amino acids of EPOR at c-terminus lead to loss of the intracellular cytoplasmic tail of the receptor, and prolonged proliferative signal resulting in hypersensitivity (5-10 fold increased sensitivity) to erythropoietin, and prolonged activity of JAK2 kinase and STAT5 activity(Arcasoy et al., 2002; Forget et al., 2000; Perrotta et al., 2010). The leukemic cells with oncogenic EPOR fusions were sensitive to JAK-STAT inhibition, suggesting a therapeutic option in high-risk ALL.

Accumulated studies, constitutive activation of cytokine interleukin-2 (IL-2) gene can induce autocrine growth of IL-2-producing leukemic cells in adult T-cell leukemia (Maruyama et al., 1987), in vitro transformation and tumorigency of T cells (Yamada et al., 1987; Karasuyama et al., 1989; Nagarkatt et al., 1994; Hassuneh et al., 1997), and tumour cells bearing IL-2-BCM fusion in a T cell lymphoma with t(4;16)(q26;p13) translocation (Laahi et al., 1992). IL-2 binds to IL-2 receptor a(IL-2Ra) and subunit of the IL-2 receptor (IL-2RG) sharing with other cytokine receptor superfamily (including IL-7 receptor, IL-21 receptor) that receptor complex transduces growth and differentiation signals (Goldsmith et al., 1995). Under physiological condition, IL-2 appears to act on antigen-specific proliferation of T lymphocytes, immune thymocytes, B-lymphocytes, natural killer cells (NK cells) and lymphokine-activated killer cells (LAK cells), which linked to adoptive immune therapy (Rosenberg et al., 1985).

In vitro nude mice, fibroblasts transfected with a chimera molecule containing the extracellular IL-2 binding domain of the IL-2R cDNA and the transmembrane and intracellular kinase domain of the EGF receptor cDNA, were morphologically transformed and produced rapidly growing tumor (Bernard & Ullrich, 1987). Moreover, retroviral expression of IL-2RG restore signaling by IL-7 receptor to X-SCID precursor cells in T-cell progression to the pro-leukemic effects of ectopic LMO2 (Pike-Overzet, 2006). Recently, the chromosomal translocation t(5;9)(q13;q22) in peripheral T cell lymphoma generating the interleukin 2 inducible T cell kinase (ITK)-spleen tyrosine kinase (SYK) fusion kinase mimics a T-cell receptor signal and drives onogenesis in mouse models (Pechloff, 2010).

Activation of the interleukin-3 (IL-3) gene by the enhancer of the IgH fusion leads to the overexpression of IL-3 gene product in 2 cases of acute lymphocytic leukemia with t(5;14)(q31;q21) translocation (Grimaldi & Meeker, 1989, 1990). Serum IL-3 correlated with the clinical course. When the patient's leukemic cell burden was highest (WBC 116,500/ul, lymphoblasts 33,785/ul), the serum IL-3 level was highest (799,5 pg/ml); whereas complete remission (WBC 123,00/ul, lymphoblasts 0/ul), serum IL-3 levels decreased to 105,1 pg/ml. Therefore, overexpression of IL-3 gene coupled with the presence of aberrant IL-3 receptor in these cells could account for oncogenic effects of proliferative advantage and may play a central role in the pathogenesis of leukemia (Grimaldi et al., 1990; Steelman et al., 1996). Aberrant presence of cysteine residues was shown to induce homodimerization of mutant interleukin-7 receptor (IL-7R), which drive constitutive signaling via JAK1 and independently of IL-7,rc or JAK3 (Durum,2014), promoting cell transformation. This abnormality is involved in -10% human pediatric T-cell leukemogenesis, paving the way for therapeutic targeting oncogenic IL-7R-mediated signaling in T-ALL (Sasson et al., 2006; Shochat et al., 2014; Mansour et al., 2013). Interleukin-21 receptor (IL-21R) is capable of signal transduction through homodimerization or potentially heterodimerization with IL-2R gamma. IL-21 and IL-21R not only regulates proliferation of mature B cells and T cells in response to activating stimuli but also mediate expansion of NK population from bone marrow. The gene for IL-21R is found in B cells in t(3;16)(q27:p11),which is recurrently observed in diffuse large B-cell lymphoma and a lymphoma cell line YM (Ueda et al., 2002). This IL-21R/BCL6 fusion gene is clearly associated with lymphoid cell origin.

Conclusion

To date, antibodies that target oncogenic receptors are often targeted toward lysosome (Moody et al., 2015) or blockade of translocation from the endoplasmatic reticulum to the cell surface of specific antigens such as vascular endothelial growth factor receptors (VEGFR2) or Tie2 (Kirschning et
at., 2010). For instance, targeting cells with biotinylated ligands and addition of streptavidin efficiently targets trastuzumab to lysosome and this crosslinking of trastuzumab increased lysosomal degradation of its cognate oncogenic receptor Her2 in breast cancer cell lines (Moody et al., 2015). Another burgeoning class of targeted chemotherapies called antibody-drug conjugates (ADCs). This ADCs that have demonstrated sufficient efficacy to gain and retain clinical approved are adotrastuzumab emtansine (brand name Kadcyla) and brentuximab vedotin (brand name Adcetris) (Ornes, 2013). The auristatin-based antibody-drug conjugate BAY1187982 is for the treatment of FGFR2-positive solid tumors (Sommer, 2016). Another, the nicotinic acetylcholine receptor a7-nAchR (toxico - logy) is the oncogenic receptor, which mediated nicotine (NNK and NNN) oncogenic signaling in an important role in the initiation and progression of cancer including lung cancer and this oncogenic response was in parallel with the mutagenic and cytotoxic effects of tobacco smoke to promote the growth and angiogenesis of the tobacco related cancers (Zhao, 2016). Thus nAchRs yield new targets for the prevention and treatment of tobacco related cancers. Thus, down regulating oncogenic receptors may be useful paradigm and perspective in currently the third-line setting of clinical target therapy and in rendering our better understanding of cancer biology (Woodman, 2016; George Zhu, 2014).

Conflicts of interest
The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Acknowledgement
We wish to thank Prof. T. Taniguchi in University of Tokyo in Japan, Nobel Laureates Prof. Ferid Murad in University of Texas Health Center in USA and UNESCO Science Laureates Prof. Atta-ur-rahman in international center for chemical and biological sciences, university of karachi in Pakistan for their valuable help.

References
Chandrasekaren M, Ramadevi K. 2013. Thyromegaly and iodine

www.apjonline.in
nutritional status in a tertiary care hospital in South India. Indian J Endocrinol Metab, 17:260-4
Donini M et al., 2007. G-CSF treatment of severe congenital neutropenia reverses neutropenia but does not correct the underlying functional deficiency of the neutrophil in defending against microorganisms. Blood, 109:4716
subclinical Cushing’s disease due to pituitary macroadenoma. Endocrine Pathology, 19:252-60.

Friedman DR, Weinberg JB. 2013. Inhibition of B-cell receptor signaling as a therapeutic strategy for treatment of CLL. The Haematologist, 13:5.

www.apjonline.in

www.apjonline.in

Ranke MB et al. 1999. Long-term treatment of GH insensitivity syndrome with IGF-1. Results of the European multicenter...

Singh RR, Kumar R. 2005. Steroid hormone receptor signaling in...
Vigna E, Chiriac C, Cignetto S, Fontani L, Basilio C, Petronzelli F, Comoglio PM. 2015. Inhibition of ligand-independent constitutive activation of the Met oncogenic

